Toughness of Ni/Al2O3 interfaces as dependent on micron-scale plasticity and atomistic-scale separation

نویسندگان

  • Y. Wei
  • J. W. Hutchinson
چکیده

Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction–displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticityenhanced toughness emerge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First principles based predictions of the toughness of a metal/oxide interface

We describe a first-principles-based strategy to predict the macroscopic toughness of a c-Ni(Al)/a-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacement curves are obtained from derivatives of the energy...

متن کامل

Time Dependent Debonding of Aluminum/Alumina Interfaces under Cyclic and Static Loading

The structural integrity of oxide/metal interfaces is important in many applications. While most attention has focused on the debonding of oxide/metal interfaces by conducting strength and fracture toughness tests, very few investigations have looked at time dependant failure of interfaces under cyclic or static loading. Tests have been conducted on sandwich specimens consisting of 5 100 micron...

متن کامل

Analyses of crack growth along interface of patterned wafer-level Cu–Cu bonds

A preliminary theoretical study is carried out of the role of micron-scale patterning on the interface toughness of bonded Cu-to-Cu nanometer-scale films. The work is motivated by the experimental studies of [Tadepalli, R., Turner, K.T., Thompson, C.V., 2008b. Effects of patterning on the interface toughness of wafer-level Cu–Cu bonds. Acta Materialia 56, 438–447; Tadepalli, R., Turner, K.T., T...

متن کامل

Atomic simulations of kinetic friction and its velocity dependence at Al/Al and -Al2O3/ -Al2O3 interfaces

Kinetic friction during dry sliding along atomistic-scale Al 001 /Al 001 and -Al2O3 0001 / -Al2O3 0001 interfaces has been investigated using molecular dynamics MD with recently developed Reactive Force Fields ReaxFF . It is of interest to determine if kinetic friction variations predicted with MD follow the macroscopic-scale friction laws known as Coulomb’s law for dry sliding and Stokes’ fric...

متن کامل

Evaluation of microstructure and mechanical properties of bulk nanostructured Ti5Si3 and Ti5Si3-Al2O3 nanocomposite

Mechanical alloying and vacuum sintering have been used to produce bulk nanostructured Ti5Si3 and Ti5Si3-15Wt.% Al2O3 nanocomposite. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to study the microstructural characteristics of the samples. Indentation method was used to calculate hardness, elastic modulus and fracture toughness ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008